
ARL-TR-8267• JAN 2018

US Army Research Laboratory

AReport on Applying EEGnet to Discriminate
Human State Effects on Task Performance
by Ashton Gauff, Humberto Muñoz-Barona,
Addison Bohannon, and Jean Vettel

Approved for public release; distribution is unlimited.



NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.



ARL-TR-8267• JAN 2018

US Army Research Laboratory

AReport on Applying EEGnet to Discriminate
Human State Effects on Task Performance
by Ashton Gauff and Humberto Muñoz-Barona
Southern University and A&M College, Baton Rouge, LA

Addison Bohannon and Jean Vettel
Human Research and Engineering Directorate, ARL

Approved for public release; distribution is unlimited.



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704‐0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
the burden, to Department of Defense, Washington Headquarters Services, Directorate for  Information Operations and Reports  (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐
4302.   Respondents should be aware that notwithstanding any other provision of  law, no person shall be subject to any penalty  for failing to comply with a collection of  information  if  it does not display a 
currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD‐MM‐YYYY) 

 

2. REPORT TYPE

 

3. DATES COVERED (From ‐ To)

 
4. TITLE AND SUBTITLE

 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

 

8. PERFORMING ORGANIZATION REPORT
NUMBER 

 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT

 

15. SUBJECT TERMS

 

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

OF
ABSTRACT 

 

18. NUMBER
OF
PAGES 

	

19a. NAME OF RESPONSIBLE PERSON

 
a. REPORT

 

b. ABSTRACT

 

c. THIS PAGE

 

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98) 

Prescribed by ANSI Std. Z39.18

Jan 2018 Technical Report

A Report on Applying EEGnet to Discriminate Human State Effects on Task
Performance

Ashton Gauff, Humberto Muñoz-Barona, Addison Bohannon, and Jean Vettel

ARL-TR-8267

Approved for public release; distribution is unlimited.

June - September 2017

US Army Research Laboratory
ATTN: RDRL-HRF-B
Aberdeen Proving Ground, MD 21005-5066

primary author’s email: <addison.w.bohannon.civ@mail.mil>.

In this project, we utilized optimization to discriminate brain data. Participants completed 2 cognitive tasks while ongoing brain
activity was recorded from electrodes on their scalp. Our analysis examined whether we could identify what task the participant
was performing from differences in the recorded brain time series. We modeled the relationship between input data (brain time
series) and output labels (task A and task B) as an unknown function, and we found an optimal approximation of that function
from among a family of functions. We employed stochastic gradient descent to minimize the estimation error known as the loss
function. The optimal function from among our family of approximate functions, EEGNet, successfully discriminated brain data
from a single participant with approximately 90% accuracy. Future research will apply EEGNet on data from more participants
as well as develop approaches to adapt its architecture for the non-Euclidean domains.
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1. Introduction
As the amount of battlefield technology continues to increase, Soldiers are faced
with a daunting task of trying to integrate diverse information across numerous
devices. The growing information burden across devices has spawned a strong in-
terest in “smart technology,” where algorithms strive to become a digital assistant
to streamline information processing for the end user. Unfortunately, users typi-
cally have as many examples of the technology making pervasive errors as ex-
amples where the technology provides helpful assistance, such as the numerous
auto-correct fail memes, comical questions incorrectly deduced by voice recogni-
tion software, or lane-keeping sensors on cars that alert for highway medians or
chain link fences. These failures often originate from a rigid application of an al-
gorithm. We posit that the technology would become smarter if there was real-time
feedback from the user that could modify the algorithm. Thus, research at the US
Army Research Laboratory (ARL) targets the development of adaptive technology
based on the real-time detection of human state (e.g., engagement or fatigue) to
improve the integrated performance of humans and systems.

While the concept of human state is inherently nebulous, the intuition is that the
configuration of our physiology underlying our behavior is predictive of upcoming
performance. Take the example of driving while fatigued. When we are tired, we
may swerve out of a lane unexpectedly. If sensors could use real-time physiology
to detect a human state that is predictive of decreased vigilance, smart technology
could intelligently assist with lane-keeping technology. In contrast, on days where
the driver does not have physiological markers of decreased vigilance, the smart
technology would not interfere with human driving as the swerving in and out of
lanes may be necessary in a construction zone. This is just one example about how
knowledge of the human state could enable technology to adapt more intelligently
to the user’s real-time needs.

These adaptive technologies depend on a fundamental scientific achievement to re-
liably detect physiological states that are indicative of performance. Ongoing work
at ARL examines physiological signals across the brain and body, including how
well brain activity can predict upcoming task performance. In this research, brain
activity is often measured from the scalp using electroencephalogram (EEG) sen-
sors that record ongoing electrical activity generated when different brain regions
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are communicating information in support of behavioral performance. Fluctuations
in the functional activity are then linked to variability in task performance, attempt-
ing to capture the physiological features of human state needed to predict real-time
human task needs. Based on the success of convolutional neural networks (CNN) in
extracting meaningful representations of data in image and speech processing, we
would like to be able to apply these methods to EEG.1 Currently, the need for lots
of training data poses the most significant obstacle to implementing these powerful
algorithms on EEG.

In my summer internship, I learned about ongoing work at ARL to overcome this
data challenge of EEG by using CNNs with minimal parameters. I used my back-
ground in mathematics to understand the algorithms involved in implementing EEG-
Net, an ARL-developed CNN for EEG data, and apply EEGNet to a new problem.2

This report summarizes that work. CNNs are powerful function approximators, and
in the first section of the technical approach, I review the functions that make up the
EEGNet convolutional neural network. To understand EEGNet, I had to learn about
maximum likelihood estimators that allow us to pose learning problems as opti-
mization problems. I derive the EEGNet objective function from a maximum likeli-
hood estimate in the second section. In the third section of the technical approach, I
describe stochastic gradient descent, the learning algorithm used with CNNs. Then,
I describe the implementation of EEGNet and its application to an ARL data set
that examines how human state changes following naturalistic sleep loss. The pre-
liminary results effectively discriminate between human states, and this leads to
a discussion of future directions in which I propose using EEGNet to ask further
questions about physiological state changes and how they impact task performance.

2. Technical Approach
We wanted to discriminate between human states from individuals performing dif-
ferent cognitive tasks versus observing their EEG activity alone. For this particular
project, we used EEG recordings from individuals during either rest or while per-
forming an attentional bias task. Our goal was to discriminate between the 2 tasks.
We used machine learning to discriminate between the states. We modeled the cog-
nitive task as a Bernoulli trial from which we observed the EEG recording. This
made the state discrimination problem one of state detection. Then, we posed our
learning problem as one of posterior inference, in which we used EEGNet2 for the
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inference model. Finally, we used stochastic gradient descent as our learning algo-
rithm to fit EEGNet to the observed data.

In this section, we will briefly review CNNs, introduce EEGNet, derive the posterior
inference problem, and review stochastic gradient descent.

2.1 Convolutional Neural Networks
CNNs are powerful machine learning algorithms that have been successfully ap-
plied to image processing, automatic speech recognition, speech translation, and
natural language processing.1 More recently, they have even been applied to the
analysis of EEG data.2 CNNs are a subset of algorithms known as deep learning.
Deep learning essentially implies the composition of multiple nonlinear functions.

f(x) = (fn ◦ · · · ◦ f0)(x). (1)

CNNs comprise particular functions: 2-dimensional convolutions, pooling, and batch
normalization.

2.1.1 2-Dimensional Convolution
Convolutions are a common tool in signal processing. These are linear transforma-
tions that filter a signal to accentuate or attenuate particular features. In CNNs, we
use the 2-dimensional generalization of the convolution ∗ : Rn × Rm → Rn×m:

(f ∗ g)(x, y) =
n∑

i=1

m∑
j=1

f(i, j)g(x− i, y − j). (2)

Here, f is the signal and g is the filter. During the learning process, we are selecting
the filters that capture the most important features of the signal. In images, these
features are often edges and blobs. A visualization of 2-dimensional convolution is
shown in Fig. 1.

2.1.2 Pooling
Pooling, or downsampling, reduces the dimensionality of the signal and decreases
the sensitivity of the algorithm to noise in the signal. Pooling is a dimensionality
reduction technique:

P : Rn → R ρ
n

. (3)

3



Normally, this operation is either the average or maximum of adjacent elements of 
the signal. A visualization of pooling is shown in Fig. 2.

N

2.1.3 Batch Normalization
Batch normalization is a technique for improving the learning process. It normal-
izes the features of signals in subsequent functions within the CNN, enforcing a 
multivariate Gaussian distribution of features. Figure 3 shows the distribution of 
observations before and after batch normalization.

Let X1
(k)
, . . . , X(k) be a subset of the observations where k corresponds to the batch.

More generally, these could be the input to any function fi in the CNN. We would
like to model these observations to be nearly independent and identically distributed

(IID) Gaussian samples X(k) ∼ N (x; µ = 0, σ2 = 1). In practice, we can estimate

Approved for public release; distribution is unlimited.
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Fig. 1   2-dimensional discrete convolution

Figure reprinted from https://mlnotebook.github.io/post/CNN1/.3

Fig. 2   2-dimensional max pooling operator

Figure reprinted from https://mlnotebook.github.io/post/CNN1/.3
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the mean and variance of each batch with the sample mean x̄(k) and sample variance
(s2)(k) and normalize the observations accordingly as in a z-score.

z
(k)
i = (s2)(k)x

(k)
i + x̄(k). (4)

Learning parameters for the sample mean β ≈ s2 and sample variance γ ≈ x̄ make
this procedure more computationally efficient and the learning more smooth.4

Fig. 3 Batch normalization

2.2 EEGNet
EEGNet is a particular instance of a CNN with a set of functions optimized for EEG
observations. The functions that compose EEGNet are shown in Fig. 4. It is divided
into 4 layers, in which most have a 2-dimensional convolution, pooling operation,
and batch normalization. The first layer can be interpreted as a nonlinear spatial
filter. The second layer can be interpreted as a nonlinear temporal filter. Then, the
third layer aggregates the global features of the signal.

Fig. 4 Layers of EEGNet model

Table reproduced from Lawhern, et al.2
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2.3 Learning Objective
Following the maximum likelihood formulation of Duda et al. in Pattern Classifi-
cation,5 we modeled the cognitive task to be distributed according to a Bernoulli
distribution conditioned on the associated realization of EEG recording. Our goal
was then to infer the cognitive task given the EEG realization, a statistical inference
task. We used EEGNet to estimate the Bernoulli parameter for each EEG realization
so that we could pose the inference problem as a parameter estimation problem.
This allowed us to use a maximum likelihood estimate to formulate the learning
problem as an optimization problem.

Let X1, . . . , XN , be IID observations of EEG recordings and Y1, . . . , YN to be the
associated cognitive task. As mentioned above, let Yi|Xi ∼ Bern(p(Xi)):

fy|x(yi|xi) = p(xi)
yi
(
1− p(xi)

)1−yi . (5)

We will consider the log likelihood of all EEG observations:

ln
N∏
i=1

fy|x(yi|xi) = ln
N∏
i=1

[
p(xi)

yi
(
1− p(xi)

)1−yi
]

(6)

=
N∑
i=1

ln
[
p(xi)

yi(1− p(xi))1−yi
]

(7)

=
N∑
i=1

yi ln p(xi) + (1− yi) ln (1− p(xi)). (8)

Now, we want to maximize the log likelihood. We can consider the joint probability
distribution f(x, y) for the random variablesX, Y and maximize the expected value
Ex,y:

max
p

EX,Y∼f [y ln p(x) + (1− y) ln (1− p(x))]. (9)

If p = p(X;ω) is a function of both the EEG observation and parameters ω ∈ Ω,
then we have the more commonly known binary cross-entropy loss:

L(ω) = min
ω∈Ω

E[−y ln p(x;ω)− (1− y) ln (1− p(x;ω))]. (10)

6
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2.4 Stochastic Gradient Descent
Since we were able to pose our state detection problem as an optimization problem,
we selected the commonly used stochastic gradient descent algorithm for our learn-
ing algorithm.6 This is a first-order method, which scales well to large data sets and
complex models.

The gradient descent algorithm is a powerful unconstrained optimization method
with convergence guarantees for strongly convex functions. It is an iterative tech-
nique that uses only knowledge of the gradient of the function. Let f be a function
of ω and 0 < η < 1 be the learning rate. The algorithm is as follows:

ωk+1 ← ωk − ηk∇ωf(ω). (11)

For objectives that have the form L(ω) = EXf(X;ω), gradient descent can be
computationally expensive. An alternative approach is stochastic gradient descent,
which uses Monte Carlo sampling to estimate the gradient:

EXf(X;ω) ≈
N∑
i=1

f(xi;ω), (12)

where xi ∼ fX . Therefore, we can estimate the gradient of our maximum likelihood
objective as follows:

∇ωEX,Y∼f [y ln p(x;ω) + (1− y) ln (1− p(x;ω))]

≈ ∇ω
1

m

m∑
i=1

yi ln p(xi
∂

∂ω
;ω) + (1− yi) ln (1− p(xi;ω)), (13)

which yields the following iterative algorithm:

ωt ← ωt−1 + ηt∇ω
1

m

m∑
i=1

yi ln p(xi;ω) + (1− yi) ln (1− p(xi;ω)). (14)

7
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3. Implementation and Analysis Using EEGNet
Using Python, we implemented EEGNet in Keras7 with Tensorflow8 back-end ac-
cording to Fig. 4. We used the default parameters for the Adam9 optimizer (a variant
of stochastic gradient descent). We trained the algorithm for 10 epochs.

Lawhern et al.2 used EEGNet on data from standard brain-computer interface (BCI)
paradigms (i.e., rapid serial visual presentation, motor imagery, and visually evoked
potentials). In this project, we have examined whether EEGNet can be extended to
detect more nebulous cognitive states that capture the influence of naturalistic sleep
loss on task performance.

We tested the approach on data from a previously collected ARL study called Cog-
nitive Resilience and Sleep History (CRASH). Participants (N=29) provided sleep
history over an 18-week time period, including objective measurements of sleep du-
ration and quality from actigraph wrist watches and subjective measurements from
daily web-based questionnaires. They came into the laboratory every 2 weeks for
a 4-h experimental session where brain data was collected while they performed
5 cognitive tasks and a resting state scan. In this novel data set, we have 8 brain-
behavior sessions to assess the impact of naturalistic sleep loss on task performance
over an 18-week timeframe.

To test the extension of EEGNet to state detection, we compared EEG data be-
tween the resting state, where the participant was able to mind wander as desired,
and the attentional bias task, where the participant had to discriminate letters that
followed emotional faces. We selected one subject from the CRASH data set and
included observations from all 8 recording sessions. We separated the data into non-
overlapping epochs of 500 ms. The data were previously processed using ARL’s
standard pipeline.10

We randomly partitioned our data into training (80%) and testing (20%) 10 times
and reported the performance in Area Under the Receiver’s Operating Characteris-
tic Curve (AUC). The average AUC observed over the 10 iterations was 90% (see
Fig. 5 for the results). This performance is significantly above change and indi-
cates that EEGNet shows promise for our extension of the method to discriminate
cognitive states beyond those of standard BCI paradigms.

8



Fig. 5 Receiver’s operating characteristic curve for one random partition of the data

4. Conclusion and Future Directions
In my summer internship project, I learned how recent work at ARL has made it 
possible to apply CNNs to EEG data. Following the work of Lawhern et al.,2 I 
implemented EEGNet, a CNN with relatively few parameters, and used it to classify 
human states from EEG recordings in a single subject from the CRASH data set. 
To complete this project, I learned how CNNs compose convolutions and pooling 
functions to build representations of data, how to use maximum likelihood estima-
tors to pose learning problems as optimization problems, and how to use stochastic 
gradient descent to solve optimization problems. Our preliminary results indicate 
that EEGNet successfully discriminates between cognitive tasks.

In future work, I would like to use EEGNet to detect the presence of more compli-
cated states. As described in the introduction, state detection will facilitate adaptive 
technologies that can respond to changes in the user’s state. In this preliminary 
work, we only discriminated the performance of one cognitive task from a rest 
state. However, the CRASH data set has recordings from several sessions for each 
subject. I would like to use EEGNet to discriminate between sessions for the same 
subject. Because the sessions differ by sleep history, the ability to discriminate by 
session would indicate that EEGNet could discriminate sleep history of a user. This 
could be used in future adaptive technologies to detect user fatigue and likely poor 
performance.

Approved for public release; distribution is unlimited.
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List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

AUC area under the receiver’s operating characteristic curve

BCI brain-computer interface

CNN convolutional neural network

CRASH cognitive resilience and sleep history

EEG electroencephalogram

EEGNet ARL-developed CNN for EEG data

IID independent and identically distributed
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